Use of aerial, infra-red and GPS technology can offset the trend of bigger farms and fewer farmers, by making farms smaller. Not physically smaller, but high tech soil maps can allow a farmer to make decisions based on small plots of land rather than large fields.

Daniel Fowler is a crop consultant in Weldon, N.C., and one of a few with an onboard computer in his truck. All a part of the high tech generation in which we live, he says.

Standing in middle of a 750 acre field, which is adjacent to the Roanoke River near Weldon, Fowler explains everything on the farm is zone sampled. He looks for crop response, clay galls, sandy spots in the soil and any other problem areas, and those are the first areas that are zoned out.

Then, he looks for soil types. And anything in aerial photography that shows differences in plant growth is his starting point for creating zones. In the 750 acre plot of land, he says, there will be an average of about three acres per sample.

“Compared to a 2.5 acre grid, I feel like I can have a little larger average sample size, because I’m breaking up the variability in the soil,” he says. All the topography maps are generated using GPS technology.

In an ongoing research project, a Clemson University research team, headed by Ag Engineer Ahmad Khalilian, at the Edisto Agricultural Research and Education Center in Blackville, S.C., has developed a variable rate application system that promises to make nematode management more efficient and more affordable.

Khalilian says the system, technically named Site Specific Nematicide Placement System, is ready for commercial deployment and use by farmers.

In tests at the research center in Blackville, John Mueller, a long-time plant pathologist and now head of the Edisto Research Center, says, “We varied from zero Telone II to four gallons per acre in the same field.

“Without variable rate technology, the grower would typically treat for the highest nematode populations, using the higher rate of nematicide across the entire field. As the nematode pressure goes up in a cotton field and the cost of pesticides goes up, the need for more precise application becomes increasingly cost effective,” Mueller says.

“In one field with variable soils, and subsequently variable nematode pressure, we increased yield by 55 pounds of lint per acre. But, we only averaged one half gallon of Telone II per acre, versus the standard uniform treatment of three gallons per acre.

“We saved $25 per acre on Telone II costs plus another $25 or so on increased lint yield.

“The cost differential is less dramatic in a Temik 15G-treated field, but still we saw a five percent yield increase and 34 percent lower nematicide usage,” Mueller adds.

Starving plants of needed water and at precise times in their development makes them more efficient users of irrigation water, contends former USDA peanut specialist Wilson Faircloth.

Cutting water application in half over five weeks saves 3-4 inches of water at a cost of $10 dollars per acre inch and even more than at $4-$5 a gallon for diesel in some years, Faircloth says.

In multi-year testing at the USDA sites in Georgia and Texas, the best peanut yields came when the plant got 25-50 percent of its water needs, compared to 100 percent of needs either by irrigation or by rainfall.

Faircloth refers to this water starving technique as prime acclimation.

“To further test the prime acclimation theory, we drought stressed peanut plants starting at day 75 after planting for three weeks. We looked at recovery and it was clear the planned stress actually stimulated the difference in the growth of the plant and boosted yields compared to the plants that had all the water they needed,” Faircloth says.

(To see details on the No. 10 and No. 9 peanut profitability practices, click here).