In 2010, the team of scientists at IIBBL found an “aggregation pheromone” that shows promise as the main pheromone attractant for BMSB. This pheromone is released by males when they feed, and it attracts both males and females.

The scientists are trying to determine the chemicals that make up the pheromone. They are working on identifying the specific isomers (structurally related chemicals) that the stink bugs may be releasing to attract other stink bugs to feeding sites. They are trying to identify the various combinations or ratios of attractant isomers that will produce an affordable and efficient lure, Khrimian says.

The mixture and components were also evaluated in field trials this summer in Beltsville, Kearneysville, and elsewhere.

Don Weber, who is overseeing the Beltsville field studies, set up traps with the different candidate formulas and twice each week counted the numbers of male, female, and nymphal (immature) stink bugs they attracted.

These pyramid traps, based on those designed by Leskey, are similar to those developed for weevils and pests of woody fruit. They have a screen funnel that allows the stink bugs entry, but inhibits exit. Lures with the experimental formulas hang alongside kill strips inside clear plastic containers.

A provisional patent application was filed, and the researchers hope to include results from the summer field trials in supplemental data that will be filed as part of the completed patent application.

Help from genes and natural enemies

Dawn Gundersen-Rindal, research leader of the ARS Beltsville group, has been working with scientists at Baylor College of Medicine to sequence the stink bug’s genome.

The sequencing is part of an international effort, known as the “i5K Project,” to sequence the genomes of 5,000 insects. Because it is such a nuisance to homeowners, a threat to agriculture, and rapidly spreading in the United States, the BMSB is one of the group’s top priorities, she said.

“Sequencing the genome will tell us about the genes that give this insect its defense mechanisms and its ability to respond to threats, such as pathogens that we might want to use against it. It might give us clues, for instance, how it may develop resistance to insecticides,” she says.

Separate from the sequencing project, Gundersen-Rindal is looking for genes that might be unique to the stink bug or make it vulnerable to specific treatments. “We hope we can find critical genes and use them against the stink bug by developing molecular biopesticides that address some weakness unique to its genetic makeup,” she says.